3.550 \(\int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=230 \[ -\frac{2 a^2 (B+2 i A) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+\frac{(4+4 i) a^{5/2} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 (-1)^{3/4} a^{5/2} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \]

[Out]

(2*(-1)^(3/4)*a^(5/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c
+ d*x]]*Sqrt[Tan[c + d*x]])/d + ((4 + 4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt
[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (2*a^2*((2*I)*A + B)*Sqrt[Cot[c + d*x]]*Sqr
t[a + I*a*Tan[c + d*x]])/d - (2*a*A*Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2))/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.828789, antiderivative size = 230, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 9, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.237, Rules used = {4241, 3593, 3601, 3544, 205, 3599, 63, 217, 203} \[ -\frac{2 a^2 (B+2 i A) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}+\frac{(4+4 i) a^{5/2} (B+i A) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}+\frac{2 (-1)^{3/4} a^{5/2} B \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(2*(-1)^(3/4)*a^(5/2)*B*ArcTan[((-1)^(3/4)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c
+ d*x]]*Sqrt[Tan[c + d*x]])/d + ((4 + 4*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt
[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/d - (2*a^2*((2*I)*A + B)*Sqrt[Cot[c + d*x]]*Sqr
t[a + I*a*Tan[c + d*x]])/d - (2*a*A*Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2))/(3*d)

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3601

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A*b + a*B)/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x]
, x] - Dist[B/b, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac{5}{2}}(c+d x)} \, dx\\ &=-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{1}{3} \left (2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a+i a \tan (c+d x))^{3/2} \left (\frac{3}{2} a (2 i A+B)+\frac{3}{2} i a B \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{1}{3} \left (4 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{3}{4} a^2 (4 A-3 i B)-\frac{3}{4} a^2 B \tan (c+d x)\right )}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\left (4 a^2 (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx-\left (i a B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{(a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx\\ &=-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac{\left (8 i a^4 (A-i B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}-\frac{\left (i a^3 B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{\left (2 i a^3 B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+i a x^2}} \, dx,x,\sqrt{\tan (c+d x)}\right )}{d}\\ &=\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac{\left (2 i a^3 B \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{1-i a x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{2 (-1)^{3/4} a^{5/2} B \tan ^{-1}\left (\frac{(-1)^{3/4} \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}+\frac{(4+4 i) a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{d}-\frac{2 a^2 (2 i A+B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{d}-\frac{2 a A \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}\\ \end{align*}

Mathematica [B]  time = 10.271, size = 496, normalized size = 2.16 \[ \frac{\cos ^3(c+d x) \sqrt{\cot (c+d x)} (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \left ((8 A-3 i B) \left (-\frac{2}{3} \sin (2 c)-\frac{2}{3} i \cos (2 c)\right )+\csc (c+d x) \left (-\frac{2}{3} A \cos (3 c+d x)+\frac{2}{3} i A \sin (3 c+d x)\right )\right )}{d (\cos (d x)+i \sin (d x))^2 (A \cos (c+d x)+B \sin (c+d x))}+\frac{\sqrt{e^{i d x}} e^{-i (3 c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\frac{i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}} (a+i a \tan (c+d x))^{5/2} \left (16 (B+i A) \log \left (\sqrt{-1+e^{2 i (c+d x)}}+e^{i (c+d x)}\right )+\sqrt{2} B \left (\log \left (2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )-\log \left (-2 \sqrt{2} e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}}-3 e^{2 i (c+d x)}+1\right )\right )\right ) (A+B \tan (c+d x))}{2 \sqrt{2} d \sec ^{\frac{7}{2}}(c+d x) (\cos (d x)+i \sin (d x))^{5/2} (A \cos (c+d x)+B \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[E^(I*d*x)]*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[(I*(1 + E
^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]*(16*(I*A + B)*Log[E^(I*(c + d*x)) + Sqrt[-1 + E^((2*I)*(c + d
*x))]] + Sqrt[2]*B*(-Log[1 - 3*E^((2*I)*(c + d*x)) - 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]]
 + Log[1 - 3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*E^(I*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]]))*(a + I*a*Tan[c
+ d*x])^(5/2)*(A + B*Tan[c + d*x]))/(2*Sqrt[2]*d*E^(I*(3*c + d*x))*Sec[c + d*x]^(7/2)*(Cos[d*x] + I*Sin[d*x])^
(5/2)*(A*Cos[c + d*x] + B*Sin[c + d*x])) + (Cos[c + d*x]^3*Sqrt[Cot[c + d*x]]*((8*A - (3*I)*B)*(((-2*I)/3)*Cos
[2*c] - (2*Sin[2*c])/3) + Csc[c + d*x]*((-2*A*Cos[3*c + d*x])/3 + ((2*I)/3)*A*Sin[3*c + d*x]))*(a + I*a*Tan[c
+ d*x])^(5/2)*(A + B*Tan[c + d*x]))/(d*(Cos[d*x] + I*Sin[d*x])^2*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.692, size = 2629, normalized size = 11.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/6/d*a^2*2^(1/2)*(24*B*cos(d*x+c)^2*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(
d*x+c))^(1/2)+12*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/
2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*
x+c)+1))+24*B*cos(d*x+c)^2*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+
1)+6*B*2^(1/2)*cos(d*x+c)*sin(d*x+c)+6*I*B*2^(1/2)+6*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((co
s(d*x+c)-1)/sin(d*x+c))^(1/2))*cos(d*x+c)^2+3*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)-1)*cos(d*x+c)^2-2*A*cos(d*x+c)*2^(1/2)+3*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((c
os(d*x+c)-1)/sin(d*x+c))^(1/2)-1)*cos(d*x+c)^2-3*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1
)/sin(d*x+c))^(1/2)+1)*cos(d*x+c)^2-6*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d
*x+c))^(1/2))*cos(d*x+c)^2+24*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2
^(1/2)-1)*cos(d*x+c)^2+24*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/
2)+1)*cos(d*x+c)^2+12*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin
(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1
))*cos(d*x+c)^2-24*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*c
os(d*x+c)^2-24*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)*cos(d
*x+c)^2-12*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos
(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))*cos(d*x+
c)^2+16*I*A*2^(1/2)*cos(d*x+c)*sin(d*x+c)-6*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-
1)/sin(d*x+c))^(1/2))-3*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)+
3*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)+24*A*cos(d*x+c)^2*arct
an(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+24*A*cos(d*x+c)^2*((cos(d*x+
c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)+12*A*cos(d*x+c)^2*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*
x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+16*A*2^(1/2)*cos(d*x+c)^2-24*I*A*((cos(
d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)-24*I*A*((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-12*I*A*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-((
(cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2
)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))+24*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)*2^(1/2)-1)+24*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2
)*2^(1/2)+1)+12*I*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c
)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))-14*
A*2^(1/2)-24*A*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-24*A*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)+1)-12*A*((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1)/(((cos(d*x+c)-1)
/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))-24*B*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*
2^(1/2)-1)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-12*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(-(((cos(d*x+c)-1)/sin(d
*x+c))^(1/2)*2^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2)*sin(d*x+c)
-cos(d*x+c)-sin(d*x+c)+1))-24*B*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(
1/2)+1)-6*B*2^(1/2)*sin(d*x+c)-3*I*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)/sin(d*x+c))^
(1/2)+1)*cos(d*x+c)^2+6*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan(((cos(d*x+c)-1)/sin(d*x+c))^(1/2))-
3*B*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-1)+3*B*2^(1/2)*((cos(d*x+c)
-1)/sin(d*x+c))^(1/2)*ln(((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+1)-14*I*A*2^(1/2)*sin(d*x+c)-6*I*B*2^(1/2)*cos(d*x+
c)^2)*(cos(d*x+c)/sin(d*x+c))^(5/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*sin(d*x+c)/(I*sin(d*x+c)+co
s(d*x+c)-1)/cos(d*x+c)^2

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 1.59136, size = 2090, normalized size = 9.09 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(sqrt(2)*((-32*I*A - 12*B)*a^2*e^(2*I*d*x + 2*I*c) + (24*I*A + 12*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)
)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + 3*sqrt((-32*I*A^2 - 64*A*B + 3
2*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((4*I*A + 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (-4*I*A -
4*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d
*x + I*c) + sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((4*I*A
+ 4*B)*a^2)) - 3*sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((4*I*
A + 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (-4*I*A - 4*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x +
2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) - sqrt((-32*I*A^2 - 64*A*B + 32*I*B^2)*a^5/d^2)*d*e^(2*
I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*a^2)) - 3*sqrt(4*I*B^2*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d
)*log((sqrt(2)*(B*a^2*e^(2*I*d*x + 2*I*c) - B*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*
c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c) + sqrt(4*I*B^2*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x
- 2*I*c)/(B*a^2)) + 3*sqrt(4*I*B^2*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*(B*a^2*e^(2*I*d*x + 2*I*c
) - B*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*
d*x + I*c) - sqrt(4*I*B^2*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(B*a^2)))/(d*e^(2*I*d*x + 2*I*c
) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(5/2)*(a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(5/2)*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^(5/2), x)